THE PROBLEMS OF HERPETOLOGY

Proceedings of the 5th Congress
of the Alexander M. Nikolsky Herpetological Society

24-27 September 2012
Minsk, Belarus

Minsk, 2012
Using original and published data on female body length (SVL), clutch size, offspring mass, and other related traits collected in 43 populations from a larger part of Northern Eurasia we documented patterns of geographic variation of these traits and investigated the possible effects of reproductive mode, phylogeny, and climate. Oviparous populations tend to have higher newborn mass than viviparous populations but these two groups do not differ for clutch size adjusted for female SVL. The latter parameter tends to increase in sites with warmer summer. Across study samples, SVL of gravid females tends to decrease in milder climates but several populations deviate strongly from this trend.
число кладок в год и средняя продолжительность жизни) эти параметры описывают репродуктивные стратегии — адаптивные сочетания состояний рассматриваемых признаков (Tinkle et al., 1970).

Рептилии, особенно ящерицы, отличаются значительным разнообразием репродуктивных стратегий и являются одной из модельных групп эволюционно-экологических исследований. Тем не менее, работы, содержащие обстоятельный анализ географической изменчивости репродуктивных параметров широкоареальных видов ящериц и змей все еще единичны (Gregory, Larsen, 1993). Между тем, именно такие исследования эффективны для проверки адаптационистских гипотез, поскольку условия обитания разных популяций различаются сильно, а уровень их филогенетической близости высокий.

Привлекательным объектом для изучения внутривидовой изменчивости репродуктивных стратегий является живородящая ящерица Zootoca vivipara (Lichtenstein, 1823). Это обусловлено рядом обстоятельств: Z vivipara — (1) самый широко распространенный вид наземных рептилий и (2) один из очень немногих видов, представленных живородящими и яйцекладущими формами; (3) репродуктивные параметры Z. vivipara исследованы у значительного числа локальных популяций (Орлова и др., 2003; Булахова и др., 2007; Епифанова, 2009, 2011; см. также ссылки в таблице); (4) опубликована весьма детальная филогения вида (Surget-Groba et al., 2006), с которой можно соотнести картину географической изменчивости исследуемых признаков.

Цель нашей работы — описание и анализ внутривидовой изменчивости репродуктивных параметров и размеров тела самок живородящей ящерицы. Главной задачей было проверить, насколько внутривидовая дифференциация — в частности, между живородящими и яйцекладущими формами, между филогенетически близкими популяциями, обитающими в контрастных климатических условиях — соответствует предсказаниям теории эволюции репродуктивных стратегий и жизненных циклов. Представляется важным и описательный аспект нашего исследования: выявленная картина географической изменчивости плодовитости и сопряжённых с ней признаков послужит вкладом в изучение фенотипического разнообразия Z. vivipara — фенового вида рептилий Северной Евразии.

Обобщены оригинальные и литературные данные о величине кладки/помета (CS) и длине тела (SVL) 1250 самок из 43 локальных и региональных выборок, охватывающих большую часть ареала (от Испании до Сибири) и представляющих практически все филогенетические группы (клады по: Surget-Groba et al., 2006). Для части выборок имеются также данные по массе новорожденных (neo-mass), послеродовой массе самок (pp-mass), массе кладки (разность масс самки до и после родов, CM) и так называемой эффективной массе кладки (произведение средней массы новорожденных на величину выводка, eCM); обе оценки массы кладки фигурируют в анализе в относительной форме: в процентах от послеродовой массы самки (RCM и eRCM).

Все данные о массе тела и большая часть данных о величине кладки получена путем мониторинга отловленных в природе и содержащихся в стандартных условиях (Pilorge, 1987, с незначительными модификациями в других исследованиях) беременных самок. Послеродовую массу самки и массу жизнеспособных детенышей измеряли в первые 24 часа после родов, предродовую массу — в последние 1–3 суток.
беременности (взвешивание перед родами рассматривали как потенциальный источник стресса, поэтому последний параметр учтен у сравнительно небольшой части самок).

Данные по изменчивости средних показателей исследуемых признаков в 43 популяциях суммированы в таблице. Ниже мы кратко остановимся на некоторых из выявленных закономерностей.

Яйцекладущие популяции характеризуются более крупными размерами новорожденных. Последнее свойство особенно сильно выражено у восточной яйцекладущей формы, откладывающей яйца с наименее развитыми эмбрионами (Heulin et al., 2002). Детеныши этой формы в 1.3–1.7 раза тяжелее детенышей остальных исследованных популяций Z. vivipara (таблица), но их средняя масса близка к таковой других видов Lacertinae (напр., Bosch, Bout, 1998), имеющих сходные с Z. vivipara размеры взрослых самок. Уменьшение массы детенышей в ряду восточная яйцекладущая форма— западная яйцекладущая форма— живородящие формы хорошо согласуется с гипотезой о физических ограничениях на общий объем кладки, накладываемых задержкой яиц в яйцеводах (Qualls, Shine, 1995). Различия по относительной массе кладки также соответствуют теоретически ожидаемым (средние значения выше у живородящих популяций — таблица), но не достигают уровня статистически значимых (тест Манна-Уитни, Z=-1.45, P=0.146).

Величина кладки, статистически приведенная к длине тела самки, не различалась значимо ни между яйцекладущими и живородящими популяциями в целом, ни между западной и восточной живородящими кладками. Внутри клад географическая изменчивость этого параметра обнаруживает положительную корреляцию со средней температурой воздуха летних месяцев (r=0.64, P=0.024 и r=0.47, P=0.024 у западной и восточной живородящей формы, соответственно).

Длина тела беременных самок западной яйцекладущей формы меньше, чем у западной и восточной живородящих (ANOVA, тест Шеффе, P=0.031 и P<0.001 соответственно). В то же время в объединенном массиве выборок длина тела обнаруживает отрицательную корреляцию с основным трендом изменения климата (1-й главной компонентой, включающей 59% изменчивости среднемесячных температур и количества осадков между пунктами исследований ящериц) в направлении от Сибири к северной Испании (Рисунок). Этот тренд можно интерпретировать как увеличение мягкости климата. При введении поправки на указанную корреляцию размерные различия между кладами почти исчезают (ANCOVA, P=0.251)!
Таблица. Географическая изменчивость репродуктивных параметров и размеров тела беременных самок в пяти кладах живородящей ящерицы. Клады — согласно: Surget-Groba et al. 2006; расшифровка признаков дана в тексте; n – число исследованных популяций

<table>
<thead>
<tr>
<th>Клад</th>
<th>статистика</th>
<th>SVL (mm)</th>
<th>CS</th>
<th>neo-mass(mg)</th>
<th>RCM (%)</th>
<th>eRCM (%)</th>
<th>pp-mass (g)</th>
<th>источник данных</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ц. Европейская живородящая</td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Lindtke et al. 2010</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>64.5</td>
<td>6.5</td>
<td>201.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>восточная яйцекладущая</td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Lindtke et al. 2010</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>60.6</td>
<td>5.4</td>
<td>277.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>западная яйцекладущая</td>
<td>n</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Braña et al. 1991;</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>52.2</td>
<td>4.6</td>
<td>191</td>
<td>45.2</td>
<td>2.2</td>
<td></td>
<td>Osenegg 1995;</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>57.8</td>
<td>6.5</td>
<td>215</td>
<td>49.0</td>
<td>3.3</td>
<td></td>
<td>Bauwens,</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>54.7</td>
<td>5.46</td>
<td>205.3</td>
<td>47.5</td>
<td>2.65</td>
<td></td>
<td>Dias-Uriarte 1997</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>0.99</td>
<td>0.39</td>
<td>7.31</td>
<td>0.89</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>2.22</td>
<td>0.86</td>
<td>12.66</td>
<td>1.78</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>западная живородящая</td>
<td>n</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>Pilorge et al. 1983;</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>53.0</td>
<td>4.33</td>
<td>164</td>
<td>40.0</td>
<td>20.0</td>
<td>3.2</td>
<td>Pilorge 1987;</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>63.6</td>
<td>9.77</td>
<td>206</td>
<td>82.0</td>
<td>37.0</td>
<td>4.9</td>
<td>Bauwens, Verheyen 1987;</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>59.0</td>
<td>6.38</td>
<td>182.2</td>
<td>58.3</td>
<td>27.8</td>
<td>4.03</td>
<td>Uller, Olsson 2003;</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>0.81</td>
<td>0.47</td>
<td>4.1</td>
<td>5.10</td>
<td>3.68</td>
<td>0.27</td>
<td>прочие лит. источники и ориг. данные.</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>2.93</td>
<td>1.68</td>
<td>12.9</td>
<td>14.43</td>
<td>8.22</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>восточная живородящая</td>
<td>n</td>
<td>23</td>
<td>23</td>
<td>9</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>Liu et al. 2008</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>54.7</td>
<td>4.88</td>
<td>170</td>
<td>46.2</td>
<td>25.0</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>70.3</td>
<td>9.36</td>
<td>219</td>
<td>76.2</td>
<td>39.8</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>61.2</td>
<td>6.65</td>
<td>193.0</td>
<td>59.0</td>
<td>35.7</td>
<td>3.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>0.64</td>
<td>0.24</td>
<td>5.0</td>
<td>6.52</td>
<td>1.76</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>3.09</td>
<td>1.13</td>
<td>15.1</td>
<td>13.05</td>
<td>4.97</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>
Учитывая, что главная компонента географической изменчивости климата слабо связана с температурами летних месяцев, но сильно коррелирует с температурами остальных сезонов, ее отрицательная корреляция с размером тела может иметь следующую биологическую основу. В мягким климата сезон активности ящериц более продолжительен, что ведет к уменьшению возраста наступления половой зрелости. С этим согласуются имеющиеся демографические данные по живородящей ящерице (Heulin et al., 1997; Булахова и др., 2007). В результате взаимодействия процессов роста и полового созревания ящериц в умеренном климате, описанного популярной моделью Эдольфа и Портера (Adolph, Porter, 1996), последнее сопряжено с уменьшением размеров впервые размножающихся особей. С последним показателем сильно коррелируют и средние размеры взрослых животных (Shine, 1990).

Наличие популяций, которые резко отклоняются от описанной выше тенденции (Рисунок), свидетельствует о существовании иных — возможно, более сильных — детерминантов размеров тела, выяснение природы которых требует дальнейших исследований.

Рисунок. Длина тела беременных самок в разных популяциях и значения главной компоненты географической изменчивости климата в соответствующих пунктах.

Клады (по Surget-Groba et al. 2006): west ov. — западная яйцекладущая (Z. v. luislantzi); west viv. — западная живородящая; east ov. — восточная яйцекладущая (Z. v. carniolica); east viv. — восточная живородящая; c.viv. 1 — централизованно-европейская живородящая.


наук». Прил. № 8. Материалы науч. конф., симпоз., школ, проводимых в ТГУ. С. 150–158.


Lindike D., Mayer W., Böhme W., 2010. Identification of a contact zone between oviparous and viviparous common lizards (Zootoca vivipara) in central Europe: reproductive strategies and natural hybridization // Salamandra. 46. 2. P. 73–82.


